This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Ligand Exchange by Halogenation of P^{III}Compounds

Jörg Gloede

^a Zentralinstitut für Organische Chemie, Akademie der Wissenschaften der DDR, Berlin

To cite this Article Gloede, Jörg(1990) 'Ligand Exchange by Halogenation of P^{III} Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 49: 1, 155 — 158

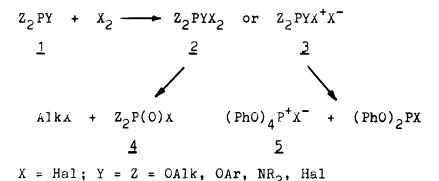
To link to this Article: DOI: 10.1080/10426509008038930 URL: http://dx.doi.org/10.1080/10426509008038930

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.


LIGAND EXCHANGE BY HALOGENATION OF PIII COMPOUNDS

JÖRG GLOEDE

Zentralinstitut für Organische Chemie, Akademie der Wissenschaften der DDR, Rudower Chaussee 5, Berlin, 1199, DDR.

<u>Abstract</u> The chlorination of several acyclic and cyclic P^{III}compounds at 0°C is discussed. Often a ligand exchange reaction is observed.

The halogenation of P^{III} compounds 1 gives dihalogenophosphoranes 2 or halogenophosphonium halogenides 2. It is known, that the halogene adducts are often unstable; in the case of Y = OAlk they react to the phosphoryl compounds 4 and in the case of Y = Z = OPh to the phosphonium salts 5 under ligand exchange 1.

We found, that the chlorination (0°C) of the compounds <u>1a - 1d</u> did not give the halogene adducts <u>2</u> or <u>3</u>, but the phosphonium salts <u>6a - 6c</u> instead. <u>6d</u> exchanged the last chlorine of the cation and gave <u>6f</u>. Furthermore, the phenyl o-phenylene phosphite <u>1e</u> reacted with

chlorine to two phosphoranes and PIII chloride.

$$2 Z_2PY + 2 Cl_2 \longrightarrow Z_2PY_2^+ Z_2PCl_4^-$$

$$\underline{1}$$

$$\underline{1e} \xrightarrow{C1_2} z_2 P(OPh)C1_2 + z_2 P(OPh)_2 C1 + z_2 PC1$$

Our interpretation of these reactions is summarized in the following four equations:

$$\underline{1} + X_2 \longrightarrow \underline{2} \text{ or } \underline{3}$$
 (1)

$$\underline{2} \text{ or } \underline{3} + \underline{1} \longrightarrow z_2 P Y_2 X \text{ or } z_2 P Y_2^{+} X^{-} + z_2 P X$$
 (2)

$$z_2PX + x_2 \longrightarrow z_2PX_3 \tag{3}$$

$$z_2 P Y_2^+ X^- + z_2 P X_3 - \underline{6}$$
 (4)

X = C1

This assumption, especially equation (2), was proven by the reaction of stable chlorine adducts <u>7</u> and <u>8</u> with P^{III}compounds. All reactions proceeded under ligand exchange.

Furthermore, we tested our assumption by the reaction of two moles of P^{III} compounds with one mole of chlorine, the addition of equations (1) and (2). In all cases we found the products expected 2,3 .

$$2 \underline{1b} + Cl_{2} \longrightarrow (Me_{2}N)_{2}PCl_{2}^{+}Cl^{-} + PCl_{3}$$

$$2 \underline{1c} + Cl_{2} \longrightarrow catP(NMe_{2})_{2}^{+}Cl^{-} + catPCl$$

$$2 \underline{9} + Cl_{2} \longrightarrow \underline{10} + (PhO)_{2}PCl$$

$$4 \underline{1a} + Cl_{2} \longrightarrow (PhO)_{4}P^{+}Cl^{-} + 3 PCl_{3}$$
 (5)

In contrast to <u>1b</u> or <u>1c</u>, <u>9</u> reacted with chlorine (1:1) to <u>8</u>. In accordance with <u>1b</u> or <u>1c</u> however, <u>9</u> reacted with chlorine (2:1) to <u>10</u>. With a quarter of chlorine <u>1a</u> gave the salt <u>5</u> (X=Cl; Eq.(5)). It is a multiple ligand exchange reaction.

We also studied the chlorination of 1 with antimony pentachloride and obtained the chlorophosphonium hexachloroantimonates 11 in good yields⁴.

$$z_2 PY + 2 SbC1_5 \longrightarrow z_2 PYC1^+SbC1_6^- + SbC1_3$$

 $\underline{1}$
 $z = Y = OPh, NMe_2, Hal, o-c_6H_4O_2$

We did not observe a ligand exchange, probably the rate of the formation of hexachloroantimonate is much faster than the rate of the ligand exchange reaction.

$$\frac{1}{-\text{SbCl}_{5}} \quad 2$$

$$x = \text{Cl}$$

$$z_{2} \text{PY}_{2}^{+} x^{-}$$

$$\frac{1}{\text{SbCl}_{5}}$$

REFERENCES

- 1. Halogenation of derivatives of phosphorous acid (review), J. Gloede, <u>Z. Chem.</u>, <u>28</u>, 352 (1988).
- 2. J. Gloede and R. Waschke, Z. anorg. allg. Chem.,
- 545, 184 (1987).
 3. J. Gloede, H. Groß and R. Waschke, Phosphorus and
- Sulfur, 34, 15 (1987).

 4. The reaction with 1a and 1b was described by J. K. Ruff, Inorg. Chem., 2, 813 (1963).